
McKinsey & Company

Perspective on Hydrogen

Lanzamiento de mesas técnicas

17 June 2020

In brief

Our perspective on the potential of hydrogen and why Chile could have an edge

1 Hydrogen is required for deep decarbonization

Direct electrification can serve max. 60% of today's energy demand in many parts of the world, though Chile could achieve its target of net 0 in 2050 with limited use of hydrogen

2 Unprecedented global momentum

Driven by 4 underlying trends – decarbonization, falling renewable costs, strategic government push, and industry coordination

- The global potential is large: 10x of today's hydrogen market Growth in feedstock, transport, buildings, industrial heat, and electricity
- 4 Costs are coming down fast, but are still challenging
 In industry feedstock and some transport applications, low-carbon hydrogen
 could become cost competitive before 2030.
 For steel, high-grade heat production and some residential heating, hydrogen is
 the lowest-cost decarbonization option but needs regulatory support to
 compete with fossil fuel alternatives.
- 5 Chile has great potential to profit from hydrogen development Leveraging the ultra low-cost renewables, stable environment for long-term investments, good exporting options, and some internal demand e.g. in mining, Chile could tap into hydrogen

1. Hydrogen is a solution in "hard to abate" sectors and could abate ~15% of global emissions by 2050

Sectors where hydrogen can contribute

Greenhouse gas emissions by sector

MtCO₂e

			,		
Oil & Gas	Other			Agri machinery	
Food _Pulp & Paper	Short-range cars	Modern Residential		· ·g·· · · · · · · · · ·	
Cement					
Other industry					
Cities industry					
	Long-range cars	Modern	Baseload	Land and cattle	
Other minerals	A industrial de	Commercial			
	//////////Light trucks				
lean O atacl					
Iron & steel	Heavy trucks and buses	Older			
	Rail	Residential		Waste processing	
Chemicals	Aviation				
Petroleum refining	Shipping	Older	Peak	Product use	
1-etroleum reinning	Gripping	Commercial			
Industry	Transport	Buildings	Power & Heat	Other	To

3. In a decarbonized world, Hydrogen demand could grow up to 10-fold Global energy demand supplied with hydrogen, PWh

22 Power generation, **Transportation** 6 **Building heating** 3 and power **Industry energy** 5 New feedstock

3

2050

18%

of final energy demand

6 Gt

annual CO₂ abatement

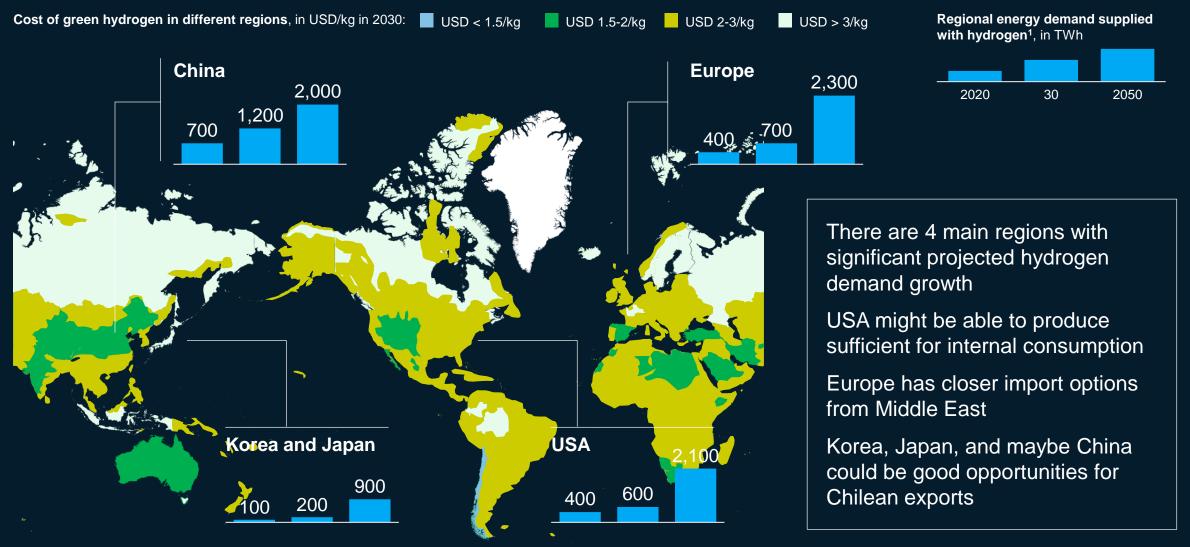
annual sales (hydrogen and equipment)

jobs created

Existing feedstock

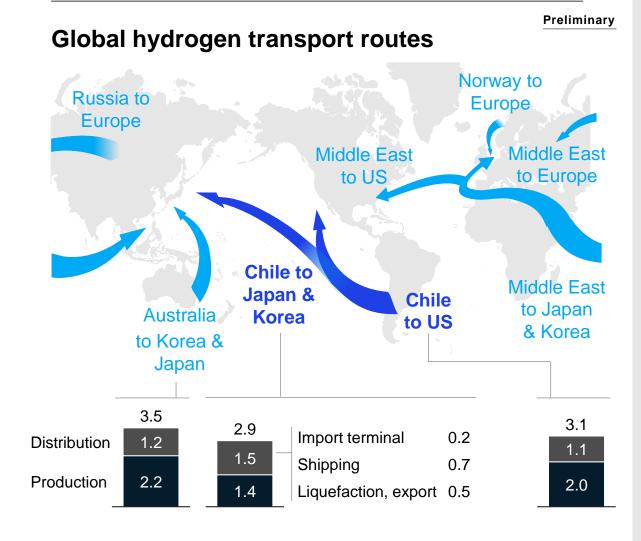
2

2015

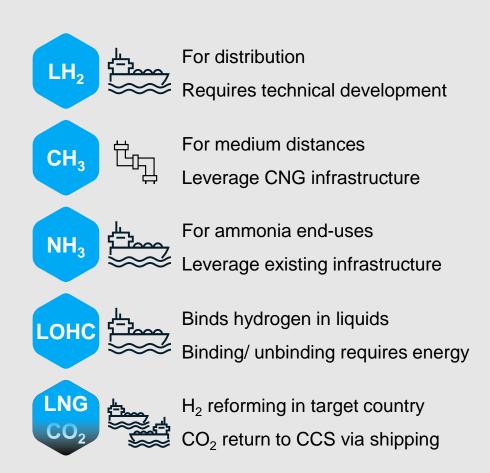

3

2020

2030

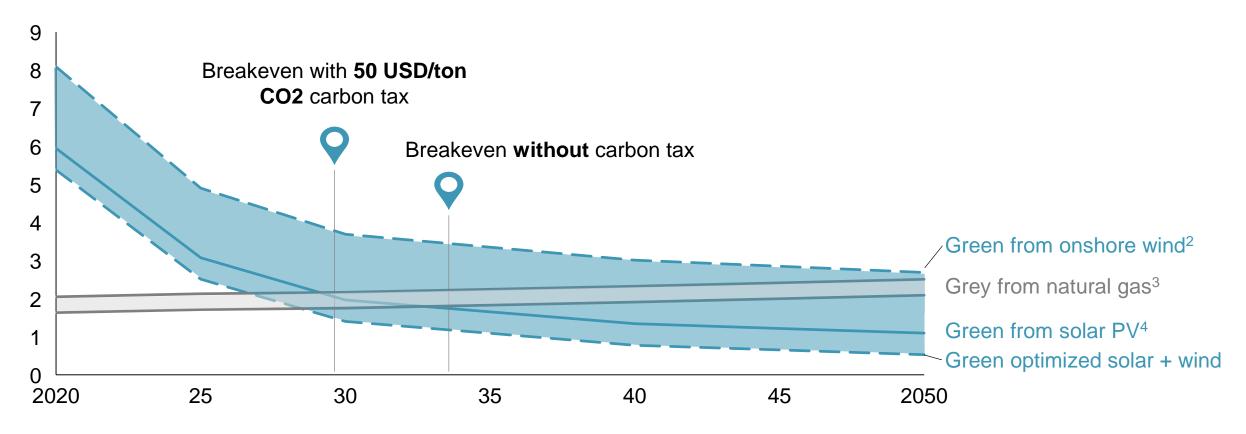

2040

5. Europe, Korea, Japan and likely also China will require hydrogen imports – creating a sizable global market opportunity for competitive hydrogen producers



5. Chilean export to Asia could be competitive vs. Australia

Cost of liquid H₂ at destination harbor, USD/kg, 2030


Hydrogen transport vectors

5. Green H2 in Chile could become competitive vs grey H2 by 2030

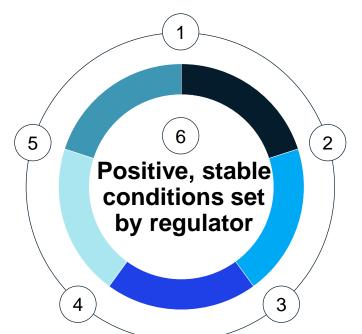
Hydrogen production cost¹, USD / kg

Preliminary

1. Based on 7% WACC

Source: McKinsey Hydrogen Cost Model McKinsey & Company

^{2.} Based on onshore wind located in the South with 24% load factor and LCOE decreasing from 59 USD/MWh in 2020 to 46 USD/MWh in 2050


^{3.} Based on steam methane reforming (SMR) and natural gas prices increasing from 8.13 USD/Mmbtu in 2020 to 11.22 USD/Mmbtu in 2050. High case includes 50 USD/ton CO2 carbon tax

^{4.} Based on solar PV located in the North with 28% load factor and LCOE decreasing from 31 USD/MWh in 2020 to 12 USD/MWh in 2050

A multiparty coalition is required to produce significant amounts of green hydrogen

Offtaker group

Main stakeholders creating and leading the partnership and guaranteeing volume demand; could be also investor

Financing investors

Willing to enter a disruptive energy market in Latin America

Electricity provider / developer

Fuel production

production process

Responsible for operating the

Current or dedicated for project

Engineering and technology

Firm contributing with design, build and operate know how; EPC could be separate

Steps to follow

Develop business case

- Competitive cost of production
- Clear demand vs. other technical options

Build viable plan with timing

Identify gaps in technical capabilities required and

Attract funding

- Different ownership models
- Include financial players

Ensure regulatory certainty

- What are must haves
- Which risks can be taken on

Chile could provide a significant portion of the world's green hydrogen

Capturing 50% of Japanese and Korean market and 20% of China in 2050 would mean:

25 Mt H₂/year
>30 bn USD revenues/year
5% of global hydrogen demand
1% of global energy demand

Possible next steps to make it happen

Develop the business case for Chile: Export opportunities to build scale. Champions that want to lead locally (mining, airline, shipping). Secondary use cases that become cost efficient at marginal cost.

Articulate the overall vision: Where to start. Sequence in building out infrastructure. Public milestones and targets.

Define the regulatory framework: Required context to deliver the business case. Long-term certainty independent of political cycle. Right conditions to enable the investment.

Build multiparty coalitions: Build industry support for most promising cases. Bring the right players together from different sectors. Ensure international cooperation to bring expertise where required.