

4th Generation District Heating

4GDH benefits towards the heat source

- Plasgeilhees of renewable and surplus heat utilization

Other benefits of 4GDH systems to the energy infrastructure

- Increased CHP efficiency
 - Lower supply temperatures increase power generation efficiency
 - Lower return temperatures increase flue gas condensation
- Reduced distribution losses

What impact has the 4GDH concept on currently applied technologies?

Distribution network

- Pipe dimensions optimized in relation to heat loss as well as pumping power consumption
- The low supply temperature opens up for increased application of flexible pre-insulated plastic pi

 Pictures from Thermaflex pipe manufacturer
- Fast installation
- Cost efficient

Space heating

- Heat emitters:
 - Radiators: need to be dimensioned for 55°C supply, 25°C return for 20°C indoor air temperature (55/25/20°C)
 - Floor heating: No impact as floor heating is generally designed for 45/25/20°C
- Control equipment:
 - High focus on smart controllers

Figure 3: Alkmaar, NL: 6 houses connected to District

What impact has the 4GDH on currently applied technologies?

Domestic hot water (DHW) preparation

Due to the low supply temperature instantaneous
 DHW preparation using high efficiency heat
 exchangers and high quality controls are required

Domestic hot water idling functions

- With the elimination of domestic hot water circulation a new (old) issue emerged:
 - People are in general impatient
- To limit the waiting time for domestic hot water some aspects need to be considered:
 - a) Minimize the pipe distances and dimensions from the DHW unit to the taps and
 - b) To keep the supply pipe and/or the domestic hot water heat exchanger warm during non-tapping periods by using by-passes, on the primary side

Why does 4GDH fit with future low energy buildings?

Low energy buildings:

- To maximize energy efficiency low energy buildings are generally designed with low temperature heating installation
 - Floor heating
 - Low temperature radiators
- <u>Domestic Hot Water installation is designed to minimize energy consumption</u>
 - Instantaneous DHW preparation
 - Minimum DHW pipe distances
 - No DHW circulation
- Those points fit exactly with 4GDH!

4GDH and multifamily buildings?

Flat stations

- Suitable for low-temperature DH
- Flat station in each flat
- Overall DHW system volume <3 L
- Individual control over space heating
- Simple energy metering
 - One heat meter for all heat consumption
- No DHW circulation
 - Reduced heat loss
- No vertical risers in flats
 - © Reduced noise
 - © Reduced heat loss

Experience I – Danish single-family houses from 1970 - Simulation results

- The simulations showed:
 - Even for non-renovated buildings 50°C supply temperature is sufficiently high for 79% of the year
 - With moderate renovations, new windows, low-temperature supply can be used for 93% of the time
- This implies that already today lowtemperature district heating could be achieved with a temperature boosting during the coldest periods

Duration of T_{supply} over certain temperature

T_{supply} [° C]

Source: Brand. M, Svendsen. S, Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment. Energy, 2013.

Experience II – Low energy houses (2011)

- Lystrup, Denmark

- Project supported by the Danish government
- 40 low-energy single-family houses
- New DH design: Higher DH water speed, higher

ure drop

ng of developed low-

. \$UDS**tែលចាំ ០ជាចេ**ter 14 mm!

Only 14% heat loss from

Low-temperature experience III - Sønderby, Denmark

Low-temperature DH for existing buildings

- Project supported by the Danish government
- 75 single-family buildings from 1997
- Floor heating

Realization

- New low-temperature DH in-house substation
- New DH network
- Heat loss reduced from 40% -> 14%
- 80% of heat demand supplied from main <u>DH return line</u>
- Average T_{sup} = 55°C
- No complaints

Experience IV - Heat pump supplied by Ultra-LTDH (2014) - Copenhagen, Denmark

- DH supply temperature is 40°C
- Space heating part is not "boosted"=> floor heating
- DH supply flow part for DHW is split up in two parts:

Experience V – Electrical heater to boost the DHW (2016) - Copenhagen, Denmark

DH designed for 40/25°C

- Electric heater added at the d
 - DHW instantaneously heated to
 - Electrical heater boosts the tem up to 60°C by electric heater
- Expected heat loss reduction
 - 17% compared to 50/25°C
 - 40-55% compared to 80/40
- Prototypes installed in 5 hous
 - First results are promising

Experience VI - Surplus heat from supermarket cooling system

- SuperBrugsen in Høruphav, Denmark

Supermarket

Area: 1000 m2, built in 2010

Cooling Capacity: 160 kW

Waste heat: 60-100°C

Partnership model:

- SuperBrugsen earns money on the waste heat and increases its green profile
- Danfoss DH application and technology provider
- DH utility more "green energy"

Thank you for your attention

Contact information:

Dr. Oddgeir Gudmundsson

Director, Projects

og@danfoss.com